27 research outputs found

    Convergence analysis for splitting of the abstract differential Riccati equation

    Get PDF
    We consider a splitting-based approximation of the abstract differential Riccati equation in the setting of Hilbert--Schmidt operators. The Riccati equation arises in many different areas and is important within the field of optimal control. In this paper we conduct a temporal error analysis and prove that the splitting method converges with the same order as the implicit Euler scheme, under the same low regularity requirements on the initial values. For a subsequent spatial discretization, the abstract setting also yields uniform temporal error bounds with respect to the spatial discretization parameter. The spatial discretizations commonly lead to large-scale problems, where the use of structural properties of the solution is essential. We therefore conclude by proving that the splitting method preserves low-rank structure in the matrix-valued case. Numerical results demonstrate the validity of the convergence analysis

    The global Arnoldi process for solving the Sylvester-Observer equation

    Full text link

    Order reduction approaches for the algebraic Riccati equation and the LQR problem

    Full text link
    We explore order reduction techniques for solving the algebraic Riccati equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method by using a pair of projection spaces, as it is often done in model order reduction of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices

    Nonlinear Least-Squares Approach for Large-Scale Algebraic Riccati Equations

    No full text
    corecore